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Vibrio parahaemolyticus is the leading seafood-transmitted bacterial pathogen
worldwide. It causes gastroenteritis and, rarely, lethal septicemia. The estimated

45,000 annual cases of foodborne V. parahaemolyticus infections in the United States
are concerning because their incidences are rising despite control measures, in part due
to the impact of changing climate on pathogen abundance and distribution (1;
https://www.cdc.gov/vibrio/). Although the pandemic complex of strains of sequence
type 3 (ST3) (serotype O3:K6) has dominated infections worldwide (2), in the United
States and Canada, the most prevalent clinical strains are of ST36 (O4:K12), which
recently spread from the Pacific into the Atlantic (3–8).

Here we report that a new lineage of V. parahaemolyticus, identified as ST631, is
rapidly emerging as the predominant pathogenic clade endemic to the Atlantic
coast of North America (3, 4, 8). The first reported ST631 genome came from a
clinical case that occurred in Louisiana in 2007 and was traced to oysters from
Florida (8). In 2009, a second ST631 clinical isolate was reported in Prince Edward
Island, Canada (O11:KUT) (4). From 2010 to 2015, the incidence of infections by
strains of ST631 has increased, with 35 confirmed cases reported in four Atlantic
coastal U.S. states (Table 1), where they are second only to ST36 strains in preva-
lence. Due to the self-limiting nature of infections and underreporting (9), ST631
infections may be more widespread.

Genome comparisons were used to understand the potential relationships of ST631
strains, which share no recent ancestry with and differ substantially from ST36 and ST3
strains (�3,600 out of 3,909 shared genes contained variation). ST631 has a virulence
gene profile similar to that of ST36 in that it harbors tdh, trh, and a type 3 secretion
system (T3SS2) and is urease positive. We applied a core genome multilocus typing
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(cgMLST) scheme to draft genomes of 37 clinical isolates and 1 environmental isolate (Table
1) representing the geographic and time spans of infections. This analysis identified 132
single nucleotide polymorphisms (SNPs) in the population and confirmed that clinical
ST631 isolates are clonal, with limited diversification (Fig. 1). Within the ST631 population,
97% of the core genes are identical, whereas less than 8% of the core genes are identical
between ST631, ST36, and ST3 strains. Both maximum-likelihood phylogeny and minimum
spanning tree analysis indicated a mixed population (Fig. 1A and B). Most isolates grouped
within one clonal complex, with only a few divergent isolates (Fig. 1B). This population
structure suggests that this pathogenic lineage recently evolved and that its distribution
may have expanded along the North American Atlantic Coast (10).

The fact that an increasing number of cases tracing to sources in the northwestern
Atlantic suggests that ST631 poses a mounting public health threat and calls for
surveillance of this lineage to reduce illnesses. That its emergence coincided with

TABLE 1 ST631 isolates with relevant information

Isolate
SRA or GenBank
accession no.a

State of
isolationb Trace-back locationb

Yr of
isolation

Reporting
countryc Sourced Geographic locatione

VP2007-095 SRR869104 LA FL 2007 USA C FL
09-4436 LRAJ01000000 PEI PEI 2009 Canada C PEI
S487-4 LFZE01000000 NA Canada 2013 Canada E PEI
MAVP-A SRR4032168 MA NA 2010 USA C
MAVP-E SRR1952988 MA MA 2010 USA C GOM
MAVP-P SRR4032175 MA NA 2010 USA C
MAVP-T SRR4032176 MA NA 2010 USA C
MAVP-L SRR4032169 MA MA 2011 USA C GOM
MAVP-Q SRR4035056 MA MA 2011 USA C GOM
MAVP-4 SRR4032177 MA NA 2013 USA C
MAVP-30 SRR4032178 MA NA 2013 USA C
MAVP-39 SRR4032179 MA NA 2013 USA C
MAVP-56 SRR4032180 MA PEI 2013 USA C PEI
MAVP-74 SRR4032181 MA CT or PEI 2014 USA C LIS or PEI
MAVP-75 SRR4032182 MA CT or MA 2014 USA C GOM or LIS
MAVP-78 SRR4032170 MA MA 2014 USA C GOM
MAVP-90 SRR4032171 MA CT 2015 USA C LIS
MAVP-94 SRR4032172 MA MA 2015 USA C GOM
MAVP-109 SRR4032173 MA MA 2015 USA C GOM
MAVP-112 SRR4032174 MA MA 2015 USA C GOM
VP1 SRR4032354 MD VA 2012 USA C MAC
VP8 SRR4032362 MD NA 2012 USA C
VP9 SRR4032363 MD NJ 2012 USA C MAC
VP31 SRR4032355 MD NJ 2013 USA C MAC
VP35 SRR4032356 MD NA 2013 USA C
VP41 SRR4032357 MD NA 2013 USA C
VP44 SRR4032358 MD NA 2013 USA C
VP45 SRR4032359 MD CT or VA 2013 USA C LIS or MAC
VP47 SRR4032360 MD NA 2013 USA C
VP55 SRR4032361 MD NA 2014 USA C
PNUSAV000012 SRR4016797 MD CT, MA, or ME 2015 USA C GOM or LIS
PNUSAV000015 SRR4016801 MD CT, MA, NY, PEI, or VA 2015 USA C GOM, LIS, MAC, or PEI
PNUSAV00021 SRR4018053 MD NA 2015 USA C
CTVP27C SRR4090622 CT CT or VA 2013 USA C LIS or MAC
CTVP31C SRR4090623 CT NA 2013 USA C
CTVP34C SRR4090624 CT NA 2013 USA C
MEVP-12 SRR4090625 ME NA 2015 USA C
MEVP-14 SRR4090626 ME NA 2015 USA C
aMassachusetts, Connecticut, and Maine isolates were sequenced using the Illumina HiSeq2500 sequencer at the Hubbard Center for Genomic Studies at the
University of New Hampshire, whereas Maryland isolates were sequenced using the Illumina MiSeq sequencer at the Center for Food Safety and Applied Nutrition,
Food and Drug Administration, Maryland, or at the Department of Health and Hygiene, Maryland.

bWhere available, the U.S. state or Canadian location of isolation and infection is identified. For multisource traces, all possible sources are listed. CT, Connecticut; FL,
Florida; LA, Louisiana; MA, Massachusetts; ME, Maine; NA, information was not available or was not determined; NJ, New Jersey; NY, New York; PEI, Prince Edward
Island; VA, Virginia.

cThe country which reported the isolate.
dC, clinical isolate; E, environmental isolate (specifically, from an oyster).
eThe geographic locations of the sources corresponding to those identified in Fig. 1A. These include Florida (FL), the Gulf of Maine (GOM), Long Island Sound (LIS),
the Mid-Atlantic Coast (MAC), and Prince Edward Island (PEI).
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warming ocean trends in some areas of the northwestern Atlantic (2) and invasion by
a nonresident pathogen indicates that a changing climate may be driving pathogen
dynamics (1, 2, 3, 7). However, this does not eliminate the potential of anthropogenic
influences on the dissemination of ST631 strains, whose continued population expan-
sion may increase human health risk beyond North America.

Accession number(s). Sequences were deposited in the Sequence Read Archive under
accession numbers SRR1952988, SRR4016797, SRR4016801, SRR4018053, SRR4032168
to SRR4032182, SRR4032354 to SRR4032363, SRR4035056, and SRR4090622 to
SRR4090626.
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